10,028 research outputs found

    The clinical utility of C-peptide measurement in the care of patients with diabetes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.C-peptide is produced in equal amounts to insulin and is the best measure of endogenous insulin secretion in patients with diabetes. Measurement of insulin secretion using C-peptide can be helpful in clinical practice: differences in insulin secretion are fundamental to the different treatment requirements of Type 1 and Type 2 diabetes. This article reviews the use of C-peptide measurement in the clinical management of patients with diabetes, including the interpretation and choice of C-peptide test and its use to assist diabetes classification and choice of treatment. We provide recommendations for where C-peptide should be used, choice of test and interpretation of results. With the rising incidence of Type 2 diabetes in younger patients, the discovery of monogenic diabetes and development of new therapies aimed at preserving insulin secretion, the direct measurement of insulin secretion may be increasingly important. Advances in assays have made C-peptide measurement both more reliable and inexpensive. In addition, recent work has demonstrated that C-peptide is more stable in blood than previously suggested or can be reliably measured on a spot urine sample (urine C-peptide:creatinine ratio), facilitating measurement in routine clinical practice. The key current clinical role of C-peptide is to assist classification and management of insulin-treated patients. Utility is greatest after 3-5 years from diagnosis when persistence of substantial insulin secretion suggests Type 2 or monogenic diabetes. Absent C-peptide at any time confirms absolute insulin requirement and the appropriateness of Type 1 diabetes management strategies regardless of apparent aetiology

    Applying Grover's algorithm to AES: quantum resource estimates

    Full text link
    We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.Comment: 13 pages, 3 figures, 5 tables; to appear in: Proceedings of the 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016

    Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report.

    Get PDF
    The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural protein involved in lateral transmission of muscle fiber force. We investigated whether single-nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with various indexes of human skeletal muscle strength and the interindividual variability in the strength responses to resistance training. We determined unilateral knee extension single repetition maximum (1-RM), maximum isometric voluntary contraction (MVC) knee joint torque, and quadriceps femoris muscle specific force (maximum force per unit physiological cross-sectional area) before and after 9 wk of knee extension resistance training in 51 untrained young men. All participants were genotyped for the PTK2 intronic rs7843014 A/C and 3'-untranslated region (UTR) rs7460 A/T SNPs. There were no genotype associations with baseline measures or posttraining changes in 1-RM or MVC. Although the training-induced increase in specific force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 rs7843014 AA and rs7460 TT homozygotes than in the respective rs7843014 C- (P = 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle specific force and PTK2 SNPs suggest that interindividual differences exist in the way force is transmitted from the muscle fibers to the tendon. Therefore, our results demonstrate for the first time the impact of genetic variation on the intrinsic strength of human skeletal muscle

    The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training

    Get PDF
    Alternative measures of muscle size, strength, and power to those used in previous studies could help resolve the controversy surrounding associations between polymorphisms of the angiotensin-I converting enzyme (ACE) and α-actinin-3 (ACTN3) genes and skeletal muscle phenotypes, and the responses to resistance training (RT). To this end, we measured quadriceps femoris muscle volume (Vm), physiological cross-sectional area (PCSA), maximum isometric force (Ft), specific force (Ft per unit PCSA), maximum isoinertial strength (1-RM), and maximum power (Wmax; n = 40) before and after 9-week knee extension RT in 51 previously untrained young men, who were genotyped for the ACE I/D and ACTN3 R577X polymorphisms. ACTN3 R-allele carriers had greater Vm, 1-RM, and Wmax than XX homozygotes at baseline (all P  0.05). Muscle phenotypes were independent of ACE genotype before (all P > 0.05) and after RT (all P > 0.01). However, people with the “optimal” ACE+ACTN3 genotype combination had greater baseline 1-RM and Wmax compared to those with the “suboptimal” profile (both P < 0.0125). We show for the first time that the ACTN3 R577X polymorphism is associated with human Vm and (independently and in combination with the ACE I/D polymorphism) influences 1-RM and Wmax

    The future of parentage analysis: From microsatellites to SNPs and beyond

    Get PDF
    © 2018 John Wiley & Sons Ltd Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next-generation sequencing technologies, especially in the study of population genetics and local adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to be affected by the emergence of next-generation sequencing approaches. We find that single nucleotide polymorphisms (SNPs), the typical next-generation sequencing marker, remain underutilized in parentage analysis but are gaining momentum, with 58 SNP-based parentage analyses published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as microsatellite markers. As few as 100–500 SNPs are sufficient to resolve parentage completely in most situations. We also provide an overview of the analytical programs that are commonly used and compatible with SNP data. As the next-generation parentage enterprise grows, a reliance on likelihood and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We discuss some of the caveats surrounding the use of next-generation sequencing data for parentage analysis and conclude that the future is bright for this important realm of molecular ecology

    A geothermal aquifer in the dilation zones on the southern margin of the Dublin Basin

    Get PDF
    This is the author accepted manuscript. the final version is available from Oxford University Press via the DOI in this recordWe present modelling of the geophysical data from the Newcastle area, west of Dublin, Ireland within the framework of the IRETHERM project. IRETHERM's overarching objective was to facilitate a more thorough strategic understanding of Ireland's geothermal energy potential through integrated modelling of new and existing geophysical, geochemical and geological data. The Newcastle area, one of the target localities, is situated at the southern margin of the Dublin Basin, close to the largest conurbation on the island of Ireland in the City of Dublin and surrounds. As part of IRETHERM, magnetotelluric (MT) soundings were carried out in the highly urbanized Dublin suburb in 2011 and 2012, and a description of MT data acquisition, processing methods, multi-dimensional geoelectrical models and porosity modelling with other geophysical data are presented. The MT time series were heavily noise-contaminated and distorted due to electromagnetic noise from nearby industry and Dublin City tram/railway systems. Time series processing was performed using several modern robust codes to obtain reasonably reliable and interpretable MT impedance and geomagnetic transfer function ‘tipper’ estimates at most of the survey locations. The most ‘quiet’ 3-hour subsets of data during the night time, when the DC ‘LUAS’ tram system was not operating, were used in multi-site and multivariate processing. The final 2-D models underwent examination using a stability technique, and the final two 2-D profiles, with reliability estimations expressed through conductance and resistivity, were derived. In the final stage of this study, 3-D modelling of all magnetotelluric data in the Newcastle area was also undertaken. Comparison of the MT models and their interpretation with existing seismic profiles in the area reveals that the Blackrock to Newcastle Fault (BNF) zone is visible in the models as a conductive feature down to depths of 4 km. The investigated area below Newcastle can be divided into two domains of different depths, formed as depth zones. The first zone, from the surface down to 1–2 km, is dominated by NE-SW oriented conductors connected with shallow faults or folds probably filled with less saline waters. The conductors are also crossing the surface trace of the BNF. The second depth domain can be identified from depths of 2 km to 4 km, where structures are oriented along the BNF and the observed conductivity is lower. The deeper conductive layers are interpreted as geothermal-fluid-bearing rocks. Porosity and permeability estimations from the lithological borehole logs indicate the geothermal potential of the bedrock, to deliver warm water to the surface. The fluid permeability estimation, based on Archie's law for porous structures and synthetic studies of fractured zones, suggests a permeability in the range 100 mD–100 D in the study area, which is prospective for geothermal energy exploitation.Science Foundation Ireland (SFI)Slovak Academy of Sciences (SAS)European Union FP7APVVSlovak Grant Agency VEG
    corecore